An analysis of the dynamics of protective immune responses in human populations with endemic schistosome infection
نویسندگان
چکیده
Urinary schistosomiasis, which is caused by the blood fluke Schistosoma haematobium, is a tropical disease infecting over 100 million people in sub-Saharan Africa. Infection typically involves repeated re-infection with long-lived parasites, and field studies have demonstrated that protective immunity takes many years to develop in humans. In communities with endemic schistosomiasis, distinctive patterns of infection and schistosome-specific antibody responses are seen, including a peaked age-infection curve, a highly aggregated distribution of infection intensities among individuals, and an age-related switch in the subclasses of antibody produced. The antibody switch, which occurs naturally in older children, is also seen in younger children following treatment with the antihelminthic drug praziquantel, which kills adult worms. This study aimed to identify the important mechanisms underlying the slow development of protective immunity, using a mathematical modelling approach. Deterministic population-level and stochastic individual-based models were developed that describe how levels of infection and antibody change with age for individuals living in endemic communities. These models were used to explore different hypotheses for the slow development of protective immunity: (1) that schistosome parasites actively suppress protective immune responses; (2) that dying worms provide the main antigenic stimulus for protective immunity and (3) that a threshold level of antigen must be experienced before a protective immune response is initiated. Models were assessed for their ability to simultaneously reproduce different robust patterns of infection and antibody responses identified in cross-sectional and post-treatment field data from Zimbabwe. It was found that significant immunosuppression by schistosomes was not consistent with population-level patterns of infection intensity, including the peaked age-infection curve. In order to explain both age-related and post-treatment changes in infection intensity and antibody responses, including the antibody switch, protective antibody responses had to be stimulated by antigens from dying worms. Additionally, it was shown that these protective responses reduced worm fecundity rather than reducing rates of re-infection. An antigen threshold was found to be consistent with observed field patterns, but was not necessary to explain them. From a large number of possible models that were considered, a single model structure and a subset of parameter combinations were identified that were consistent with field data. This model was used to predict the longer-term impact of mass-treatment programmes upon the development of protective immunity, and the consequent effects on infection levels.
منابع مشابه
CD16 Expression on Monocytes in Healthy Individuals but Not Schistosome-Infected Patients Is Positively Associated with Levels of Parasite-Specific IgG and IgG1
Human IgG1 antibody responses are associated with protection against Schistosoma haematobium infection and are now a target for schistosome vaccine development. This study aimed to investigate the relationship between total IgG and the IgG subclasses and the monocyte IgG receptor, known as FcγRIIIa or CD16, in schistosome exposed people. Systemic levels of schistosome-specific anti-adult worm t...
متن کاملHuman Schistosome Infection and Allergic Sensitisation
Several field studies have reported an inverse relationship between the prevalence of helminth infections and that of allergic sensitisation/atopy. Recent studies show that immune responses induced by helminth parasites are, to an extent, comparable to allergic sensitisation. However, helminth products induce regulatory responses capable of inhibiting not only antiparasite immune responses, but...
متن کاملHelminth parasite proteomics: from experimental models to human infections
Schistosomiasis is a major human helminth infection endemic in developing countries. Urogenital schistosomiasis, caused by S. haematobium, is the most prevalent human schistosome disease in sub-Saharan Africa. Currently control of schistosome infection is by treatment of infected people with the anthelmintic drug praziquantel, but there are calls for continued efforts to develop a vaccine again...
متن کاملExposure, infection, systemic cytokine levels and antibody responses in young children concurrently exposed to schistosomiasis and malaria
Despite the overlapping distribution of Schistosoma haematobium and Plasmodium falciparum infections, few studies have investigated early immune responses to both parasites in young children resident in areas co-endemic for the parasites. This study measures infection levels of both parasites and relates them to exposure and immune responses in young children. Levels of IgM, IgE, IgG4 directed ...
متن کاملAtopy Is Inversely Related to Schistosome Infection Intensity: A Comparative Study in Zimbabwean Villages with Distinct Levels of Schistosoma haematobium Infection
BACKGROUND The hygiene hypothesis suggests that parasitic infections protect against allergic diseases by modulating the host's immune responses. Experimental studies indicate that this protection depends on the intensity of parasitic infection, but this observation has not been tested in human populations. The aim of this study is to investigate whether the intensity of Schistosoma haematobium...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011